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The fracture stress of float glass 

K. M. ENTWISTLE 
Manchester Materials Science Centre, University of Manchester/UMIST, Grosvenor Street, 
Manchester MI 7HS, UK 

A fracture test [1 ] which uses concentrically loaded square plates supported near their corners has 
been used to measure the fracture stress of float glass. The plates were 102mm square and 
5.98mm thick. The maximum displacement at fracture was less than 0.4mm. Under these 
circumstances it has been shown that use of a linear finite element solution for the stress 
distribution and the plate deflections is justified.. The glass plates had greater edge damage than 
had the alumina plates tested in an earlier investigation. In order to secure an adequate proportion 
of failures in the central plate region, it was necessary to move the supports inwards towards the 
centre of the plate. This reduced the ratio of the maximum edge stress to the maximum stress in the 
plate. Batches of plates were tested with loading circle diameters of 7.5 and 25mm, to measure 
volume effects, with the side of the plate that had been in contact with the liquid tin in tension. 
Median ranking was used in the statistical analysis and edge failures were treated as suspensions, 
it being assumed that the minimum fracture stress of the central region of the edge-fractured 
plates was the plate centre stress at the fracture load. The Weibull modulus was determined by 
a linear regression in which extreme members of the population were given reduced weighting 
using the relationship of Faucher and Tyson [3]. The average fracture stresses were 147.2 and 
107.3 N mm 2 for the 7 5  and 25mm loading circles, respectively, and the Weibult moduli w e r e  

4.49 and 5.44. These data are shown to agree well with Weibull statistics. Tests using a 7 5  mm 
diameter ,loading circle on plates with the non-tin side in tension gave a significantly higher 
average fracture stress of 242.1 N mm -2, confirming the fact that the non-tin side has a higher 
strength. 

l .  I n t r o d u c t i o n  
A previous paper [1] described the development and 
application of a fracture test based on concentrically 
loaded square plates supported near the corners. The 
test was used to measure the effect of stressed volume 
on the average fracture stress of alumina. The results 
were shown to be consistent with the predictions of 
the Weibull analysis. The plates used in that investiga- 
tion were 1 mm thick and 103 mm square and the 
deflections at the point of fracture were about  3 ram. 
Thus the conditions were geometrically non-linear, 
and for this reason a non-linear ABAQUS finite ele- 
ment analysis was used to determine the stress distri- 
bution. 

The work described here was carried out on float 
glass plates. The objectives were two-fold: to explore 
the validity of the test for fracture stress measurements 
on glass and to use specimens of a lower aspect ratio 
than those used in the previous investigation on 
alumina to gauge if linear theory would yield ad- 
equately accurate stress and deflection data for these 
conditions.  The loading arrangement is shown in 
Fig. 1. 

The glass plates were 102 mm square and 5.98 mm 
thick. They were cut from float glass sheet and the side 
of the plate that had been in contact with the liquid tin 

was identified. The deflections at fracture were never 
greater than 0.4 mm, which is about  one-fifteenth of 
the plate thickness; so conditions would be expected 
to approach linearity. 

A significant feature of the glass plates is that the 
edge damage is much more severe than was the case 
with the alumina plates. In consequence, with the 
supports at the plate corners, about  one-third of 
a small batch of plates fractured with the origin at the 
middle of the plate edge for a loading circle diameter 
of 25 mm. Fortunately, it is possible to reduce the 
ratio of the edge stress to the maximum stress in the 
plate (which occurs on the loading circle) by moving 
the corner supports towards the centre of the plate 
along the plate diagonals. This was done, and it 
achieved test results in which over 90% of the plates 
fractured in the highly stressed central region. 

2. P late  s t r e s s e s  and d e f l e c t i o n s  
The main series of tests were carried out on glass 
plates 102 mm square and 5.98 mm thick supported at 
four points each 42.5 mm from the centre of the plate 
along a plate diagonal. 

The stress distribution and the deflection of this 
configuration with loading circle diameters of 7.5 and 
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Figure 1 Diagram showing the concentric loading system for the 
plate. A is a neoprene "0" ring�9 The supports are shown at the 
corners. They are moved radially inwards if it is necessary to reduce 
stress at the plate edges. 

25 mm were determined using the A B A Q U S  finite 
element package. Both linear and non-linear solutions 
were obtained. In the investigation reported earlier 
[1], the finite element solutions for the stresses and 
deflections were compared  with experimental values. 
The agreement was excellent. Similar comparisons  to 
be reported separately on aluminium plates, of geo- 
metry similar to that of the glass plates that are our  
present concern, showed similar agreement. On  the 
strength of this evidence it was decided to use the finite 
element solutions to analyse the fracture tests de- 
scribed here. The finite element meshes used in the 
calculations for the 7.5 and 25 m m  diameter loading 
circles were identical to those reported earlier [1]. 

Table I gives a measure of the degree of geometrical 
non-linearity at loads in the range of the fracture loads 
of the plates. It compares  the linear and non-linear 
solutions for the tensile stress at the centre of the plate, 

the maximum tensile stress in the plate, which is on the 
loading circle, the stress in the middle of the edge of 
the plate and the central deflection. In addition, as 
a sensitive indicator of non-linearity, it compares  the 
lower surface tensile stress and the upper surface com- 
pressive stress at the three positions on the plate. In 
the linear case these are equal, indicating an absence of 
membrane  stress. 

The departure from linearity is seen to be quite 
small. The predicted central deflections differ by at 
most  about  0.1% and the max imum tensile stress, 
which is particularly relevant to fracture analysis, is 
predicted by linear theory with an error less than 1%. 
We shall later compare  the result of analysing the 
fracture data  using the linear and the non-linear 
solutions. 

Individual  plates were fractured and the fracture 
load was recorded. The polar coordinates (r, 0) of 
the fracture origin were measured. The origin of r was 
the centre of the plate; the origin of 0 was a line from 
the centre of the plate to the mid-point  of the plate 
edge. The maximum tensile principal stress on the 
tensile face of the plate at the fracture origin was 
determined from stress calibration curves of which 
Figs 2 and 3 are typical. They give the distribution of 
max imum tensile principal stress as a function of r, the 
distance from the centre of the plate, for 0 = 0 ~ 15 ~ 
30 ~ and 45 ~ . This region replicates eight times to form 
the total plate�9 Fig. 2 is for a loading circle of 7.5 mm 
diameter and Fig. 3 is for a diameter of 25 mm. The 
loads correspond to the upper range of the observed 
fracture loads. Sets of similar curves for a range of 
applied loads were calculated, but  it was found that  
adequate accuracy in the determination of fracture 
stress could be obtained by using a calibration curve 
for a load close to the average fracture load of the 
batch of plates tested and multiplying the stress by the 
ratio of fracture load to calibration load. It is seen that 
the stress is almost  independent of 0 within the load- 
ing circle�9 Outside the circle the stress is more depend- 
ent on 0 for the 25 m m  diameter loading circle than for 
the 7.5 m m  circle. 

The stress solutions were used to evaluate the 
Weibull stress integrals in order to arrive at the effect- 
ive areas of the plate. It was concluded from the 
previous investigation that area integrals gave almost  

TAB L E I 102 nm square plates, thickness 5.98 mm, elastic modulus, 70,000 N mm-2, Poisson's ratio 0.22, supports 42.5 mm from centre 
of plate 

Loading Load Solution Centre Max. stress Max. edge Central 
circle (N) Stress (N mm - 2) stress deflection 
diameter (N mm - 2) (N mm- 2) (mm) 
(mm) 

7.5 4000 

25 6000 

Linear 170.1 170.6 55.45 0.2878 
Non-linear 

Tensile face 171.2 171.6 54.03 0.2875 
Compressive face - 168.8 - 169.3 - 56.81 

Linear 135.9 140.3 79.29 0.3603 
Non-linear 

Tensile face 137.4 141.3 76.71 0.3597 
Compressive face - 134.0 - 138.9 - 81.73 

2 0 0 8  



T A B L E  II Values of KA2 (see Equation 2) and effective diameter, d~, of concentrically loaded plates 102 mm square, thickness 5.98 mm, with 

corner supports  42.5 m m  from the plate centre; E = 70000 N mm -2, v = 0.22 

Loading m Load 
article (N) 
diameter 
(mm) 

KA2 

Non-linear solution Linear solution d~ (mm) 

7.5 4.5 4000 0.043 38 0.043 61 16.9 
5 0.03753 0.03768 15.8 
5.5 0.033 19 0.033 28 14.8 
6 0.029 88 0.029 93 14.1 
6.5 0.027 31 0.027 33 13,4 
7 0.025 26 0.025 26 12,9 
7.5 0.023 60 0.023 59 12.5 

10 0.01858 0.01855 11.1 
15 0.01469 0.01463 9.9 

25 4.5 6000 0.203 2 0.205 3 36.7 
5 0.1876 0.1893 35,2 
5.5 0.1748 0.176 i 34,0 
6 0.1642 0.1650 33.0 
6.5 0.1552 0.1557 32.1 
7 0.1476 0.1477 31.3 
7.5 0.1409 0.1408 30.5 

10 0.117 6 0.116 5 27.9 
15 0.092 8 0.090 7 24.8 
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Figure 2 Radial variation of max imum principal tensile stress m 
glass plates 102ram square x5.98 thick. E = 7 0 0 0 0 N m m  -2, 
v = 0 . 2 2 , 1 o a d 4 0 0 0 N . ( [ 2 ) @ = 0  ~  ~  0 - 3 0  ~  
@ = 45 ~ Loading circle diameter 7.5 mm. Supports 42.5 mm from 
centre of plate on plate diagonals. 
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Figure3 Radial variation of maximum principal tensile stress in 
glass plates 102mm square x5.98 thick. E - 7 0 0 0 0 N m m  2, 
v - 0 . 2 2 , 1 o a d 6 0 0 0 N . ( g A )  0 - 0  ~  15 ~, (O) @= 3@, ( •  
0 - 45". Loading circle diameter 25 mm. Supports 42.5 mm  from 
centre of plate on plate diagonals. 

as good a prediction of volume effects as volume 
integrals, so the area integrals were used also in this 
work. 

The effective area of the tensile face of the plate is 

AE2 = K A 2 A o  (1) 

where Ao is the total area of the tensile face and 

= L t < - +  /=1 \ 0-~ j Ao (2) 

o/1 and oi2 are the tensile principal stresses at the ith 
node in the mesh and c~ v is the maximum tensile stress 
in the plate, m is the Weibull modulus. AA/ is the 
effective area of the plate associated with the ith node 
and is obtained by summing the appropriate propor- 
tion of the areas of all the elements that meet at the 
node in question. It is implicit in Equation 1 that 

%1 and oi2 contribute independently to the fracture 
probability. To minimize the volume of computat ion 
the value of KA2 was determined for one-eighth of the 
plate, which is replicated, alternately in mirror image, 
to form the whole plate. 

Table II lists the computed values of KA2 for 
a range of values of m, for loading circle diameters of 
7.5 and 25mm and it compares the values derived 
from the linear solution with those from the non- 
linear solution at loads in the range of the fracture 
loads of the plates. The linear solution is a very good 
approximation to the true value of KA2 at the fracture 
loads. 

Included in Table II is an effective diameter, do, 
which is the diameter of a circular plate stressed in 
equal biaxial tension, at a level equal to the maximum 
stress in the square plate, which would have the same 
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fracture probability as the square plate. It should be 
compared with the appropriate loading circle dia- 
meter, because it is an index of the extent to which the 
region of the square plate outside the loading circle 
contributes to the fracture probability. It is evident 
that de converges on the loading circle diameter as 
m increases. 

3. Fracture  t e s t s  
Two batches of plates were tested with loading circle 
diameters of 7.5 and 25 mm, both with the surface of 
the plate that had been in contact with the liquid tin in 
tension. This is the weaker face of the plate. The top 
compressive face of the plate was covered with adhes- 
ive plastic film 50 lam thick to retain the fracture pieces 
and to facilitate the location of the fracture origin. 
Typical fracture patterns are shown in Fig. 4. Small 
pads of plastic film were stuck on the tensile face of the 
plate at the points of contact of the corner supports in 
order to reduce Hertzian stresses. The plates were 
extremely flat so it was not necessary to use shims to 
bring the four supports into contact with the plate at 
zero load. 

The batch of plates fractured with a loading circle 
diameter of 7.5 mm comprised 49 specimens. Five of 
these fractured at major flaws well outside the loading 
circle. These were rejected. One plate fractured with an 
initiation site at the edge. Because this is a small 
proportion of the 43 plates that fractured normally in 
the central region, it was also ignored. 

The batch fractured with a 25 mm diameter loading 
circle comprised 51 plates. Three fractured at major 
flaws and were ignored. Eight fractures initiated at the 
plate edge. 40 plates fractured normally in the central 
region. It should be noted that the ratio of edge stress 

to the maximum stress is higher for the 25 mm loading 
circle than for the 7.5 mm circle. So a higher incidence 
of edge failures is probable in the 25mm tests. Al- 
though the eight edge fractures are a small proportion 
of the batch of 48 it would be unwise statistically to 
ignore them. They were treated as suspensions [2]. We 
now discuss an appropriate treatment. 

It was evident that the fracture loads for the plates 
in which fracture started at the plate edge with 
a 25 mm diameter loading circle were in the upper half 
of the ranked order of fracture loads for the 48 plates. 
This suggests that the reason for the edge fractures is 
that the central region of the plates had a higher than 
average fracture stress, but the edge strength, depend- 
ing as it does on flaws introduced by cutting, is not 
related to the strength of the central plate region. So 
strong plates are more likely to fail at the edge. This 
tendency removes some samples selectively from the 
higher fracture stress range of the distribution. The 
formal way of treating the edge fractures as suspen- 
sions would be to place them in the ranking order at 
stresses equal to the edge stress at the fracture load. 
This would put all the eight plates below the lowest 
rank of the 40 plates that fractured normally, which is 
not realistic. If reduced edge damage had permitted 
them to fracture normally, the fracture origin would 
have been quite close to the region of maximum stress 
in the plate. Accordingly, the following procedure was 
adopted. 

The "normal" plates were ranked according to their 
fracture stress and the edge fractures were interleaved 
into this order at stresses corresponding to the stress 
at the centre of the plate at the load at which the edge 
fracture occurred. This is considered to be a realistic 
estimate of the lower limit of the strength of the body 
of the edge-fractured plates. 

Figure 4 Typical fracture patterns for 102 mm square x 5.98 mm thick glass plate. (a) Loading circle diameter 7.5 mm, (b) loading circle 
diameter 25 ram. In both cases the fracture origin is close to the loading circle. 
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Where  no suspensions existed, the specimens were 
ranked in order  of increasing fracture stress. Median  
ranking was used. The median  rank was derived from 
the rank order  i f rom 

i - 0.3 
median  rank qb = (3) 

n - 0.4 

where n is the number  of specimens, qb is identical to 
the cumulat ive  fracture probabil i ty,  Pf. 

Where  suspensions were included, the increment  of 
rank order  number  when a suspension occurred was 
compu ted  from [2] 

increment  = 

(N + 1) - previous sample order  numbe r  
(4) 

1 + remaining sample size 

where N is the total  number  of samples, including the 
suspensions. The remaining sample size includes both  
suspensions and the failure being considered. The 
rank order  i for a part icular  failed specimen was ob- 
tained by summing  all the preceding increments.  The 
median  rank was then determined from i using 

i - 0.3 
median rank qb - (5) 

N - 0.4 

Weibull  statistics predict that  the survival probabi l -  
ity, Ps, of a batch of identically sized specimens sim- 
ilarly stressed is given by 

(:o) 1 - exp (6) 
Ps 

where ~ is the fracture stress and c~o depends on the 
volume of the specimen and the stress distr ibution 

l n l n ( ~ )  = m l o g c y - m l o g c y o  (7) 

so a plot  of lnln(1/Ps)  against  ln c~ will give m, and 
1/Ps = 1/(1 - (~), where qb is both  the median rank 
and the cumulat ive  fracture probabil i ty.  

To  obtain  m, a linear regression analysis was per- 
formed in which the data  points were weighted in the 
manne r  p roposed  by Faucher  and Tyson  [3]. This 
gives reduced weights to the extreme members  of the 
populat ion.  

The weighting factor for the ith specimen was 

w~ = 3.3qb, - 27.511 - (1 - (~)o.o25] (8) 

If the regression line is y = a + bx, where 
y -  lnln(1/Ps)i  and x -=  lncq, a and b were derived 
from 

n n M 

a = (9) 

1 n n 

a n d  

b = " " " " (10)  
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Figure5 Weibull plots of fracture stress of 102ram square 
x 5.98 mm thick glass plates fractured with the tin side of the plate 

in tension. Supports 42.5 mm from plate centre on plate diagonals. 
Left-hand set of data are for a loading circle diameter of 25 mm. 
The set comprises 48 specimens including eight suspensions. The 
line was calculated by a linear regression, c~f = 107.3Nmm 2, 
m = 5.44. Right-hand set of data are for a loading circle diameter of 
7.5 mm. The set comprises 43 specimens with no suspensions. 
6 - f -  147.2Nmm -2, m = 4.49. The fracture stresses were deter- 
mined using the non-linear ABAQUS finite element solution. 

TABLE II l  Glass plates 102mm square x 5.98mm thick stressed 
with the tin side in tension. 

Loading Average Weibull 
diameter fracture stress modulus, m 
(mm) (N m m -  2 ) 

7.5 147.2 4.49 
25 107.3 5.44 

4. F r a c t u r e  d a t a  
Weibull plots for plates fractured with the tin side in 
tension are displayed in Fig. 5 for loading circle dia- 
meters  of 7.5 and 25 mm. The average fracture stress 
of the plates fractured with a 7 .5mm loading circle 
is higher, reflecting the lower stressed volume. The 
Weibull  modul i  and the average fracture stresses are 
listed in Table  III .  

If  the edge fractured plates are ignored and 
a Weibull analysis is carried out incorpora t ing  only 
the plates that  fractured centrally, the Weibull  modul i  
would be 4.49 and 6.28 for 7.5 and 2 5 m m  loading 
diameters,  respectively. These reflect the wider spread 
in the 2 5 m m  distr ibution when edge fractures are 
incorpora ted  as suspensions. 

Weibull analysis predicts that  the effect of stressed 
volume, or stressed area in this case, on the average 
fracture stress is given by 

6~'A E = constant  (11) 

where A E is the effective area of the specimen. N o w  
A E = KA2A o and KA2 is defined in Equat ion  2, so if 
A o is constant  

6~'KA2 = constant  (12) 

so if 6f25 is the average fracture stress for specimens 
fractured with a 25 m m  diameter  loading circle and 
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6f7.5 is the corresponding value for the 7.5 mm load- 
ing circle 

(~Yf7.5 6f25 (KA225) 1/m = (13) 
' ,  KA2  7. s 

The values of KA2 a r e  drawn from Table II, whence, 
using the average of the two m values, 4.97, 

_ ( 0'1876 )1/4-.97 
Of 7.5 --= 107.3 \0.03753 

= 148.32 N m m  -2 (14) 

This is very close to the observed value of 
147.2 N m -z, so Weibull statistics accurately predict 
the observed volume dependence. 

It is interesting to note that the linear finite element 
analysis predicts Weibull constants that are very close 
to those yielded by non-linear theory. Table IV lists 
the values corresponding to those in Table III derived 
from the linear stress analysis. So for plates of the 
aspect ratio and fracture stress level used in the work 
described here a linear finite element solution for the 
stresses is acceptable. 

Finally, a batch of plates was tested with the face 
that was not in contact with the liquid tin in tension. It 
is known that the tin side and the non-tin side are not 
of equal strength. A small batch of specimens was 
fractured with a loading circle diameter of 7.5 mm and 
supports 42.5 mm for the centre of the plate. A third of 
the batch fractured at the edge, because of the high 
strength of the central plate region. As the supports 
are moved inwards the ratio of maximum edge tensile 
stress to maximum tensile stress in the plate falls, as 
Table V shows. A significant reduction of edge failures 
was produced by moving the corner supports to 
a position 35 mm from the plate centre. In a batch of 
33 specimens, fractured with a loading circle diameter 
of 7.5 mm, five samples failed by fracture initiated at 
the edge. This is a satisfactory improvement. 

The stress at the point of fracture origin in the 28 
samples that failed in the central region was deter- 
mined from a non-linear finite element solution. The 
edge fractures were treated as suspensions and were 
placed in the fracture stress ranking order at a stress 
equal to the stress at the centre of the plate at the edge 
fracture load. Fig. 6 is a Weibull plot of the data. The 
average fracture stress for the batch is 242.1 N mm-2  
and the Weibull modulus 5.53, which is close to the 
range of the two values for the tests with the tin side in 
tension. The average facture stress of 242.1 N mm z is 
significantly higher than the corresponding value for 
the tin side, 147.2 N mm-2,  confirming the difference 
of strength of the two faces. 
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T A B L E  IV 

Loading Average 
diameter fracture stress 
(ram) (N r a m -  2) 

Weibull 
modulus,  m 

7.5 146.3 4.48 
25 106.2 5.43 

T A B L E  V Ratio of max imum edge stress to maximum tensile stress 
in 102 m m  square plates 5.98 m m  thick at loads comparable with 
the fracture loads (3000-7000 N) 

Loading 
circle 
diameter 
(ram) 

Distance of supports from plate centre 

50 mm 42.5 m m  35 m m  

7.5 0.400 0.315 0.225 
25 0.656 0.550 0.417 
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Figure 6 Weibull plot of the fracture stress of 102 m m x  5.98 mm 
thick glass plates fractured with the non-tin side in tension. Loading 
circle diameter 7.5 mm and supports 35 mm from plate centre on 
the plate diagonals. The set comprises 33 plates including five 
suspensions. Uses non-linear ABAQUS finite element solution. 
( ~ f = 2 4 2 . 1 N m m  2 m - 5 . 5 3 .  
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